If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+15=123
We move all terms to the left:
9x^2+15-(123)=0
We add all the numbers together, and all the variables
9x^2-108=0
a = 9; b = 0; c = -108;
Δ = b2-4ac
Δ = 02-4·9·(-108)
Δ = 3888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3888}=\sqrt{1296*3}=\sqrt{1296}*\sqrt{3}=36\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{3}}{2*9}=\frac{0-36\sqrt{3}}{18} =-\frac{36\sqrt{3}}{18} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{3}}{2*9}=\frac{0+36\sqrt{3}}{18} =\frac{36\sqrt{3}}{18} =2\sqrt{3} $
| 0.5355x=267 | | 2(p-2)=14 | | 3x-1=1x=+5 | | 0.4x+0.5=1.7 | | 0.4x+0.5=1.7 | | ^15x^2+5x=0 | | 19x+-18=180 | | 3(y2)=48 | | 5z-15=40 | | 3^4(x+12)=15 | | x+0.45x=49181 | | x2-14x+40=2x+1 | | P+0.45p=49181 | | 4x−5=23 | | (3x+5)(x-7)(x-3)=0 | | -4=5n-3n | | 5x/7-4=3 | | -4x+12x=11x+3 | | 5=4/17f | | 2x=10x-16x= | | 2a/3=13 | | 3q=+7 | | 10x14=15x-41 | | 12x+12=14x-4 | | 3q=6+7 | | F(x)=x/(7x-9) | | -2x+5-3x=5 | | 46-8x=124 | | 2z-5=6 | | 3n-2=–27 | | –8t−–4t+–16t−12t+–13=19 | | 3n+–2=–27 |